Ensemble of Adaptive Algorithms for Keystroke Dynamics

Paulo Henrique Pisani¹

Ana Carolina Lorena²

André C. P. L. F. de Carvalho¹

¹ Universidade de São Paulo (USP) ² Universidade Federal de São Paulo (UNIFESP)

Brazilian Conference on Intelligence Systems (BRACIS) – november/2015

1. Introduction

2. Ensembles in Adaptive Biometric Systems

3-Experimental Results and Conclusion

1. Introduction

2. Ensembles in Adaptive Biometric Systems

3. Experimental Results and Conclusion **Biometrics** is considered a suitable option to improve current authentication systems.

Biometric features must meet some requirements [Jain et al., 2004]:

Universality	 everyone has the feature.
Collectability	 it is possible to quantify the feature quantitatively.
Distinctiveness	 the feature allows to distinguish one person from another.
Permanence	 feature should be invariant over time.

Context

Biometrics is considered a suitable option to improve current authentication systems.

Biometric features must meet some requirements [Jain et al., 2004]:

	• everyone has the feature.
Collectability	• it is possible to quantify the feature quantitatively
Distinctivenes	However, several studies have shown that it is not the case in practice: <i>template ageing</i> [Fenker et al., 2013].
Permanence	 feature should be invariant over time.

Context

Adaptive Biometric Systems deal with *template ageing* by <u>automatically adapting</u> the user model over time.

Several **adaptive one-class algorithms** have been used for this purpose. However, the performance is not usually consistent over different datasets;

Contex

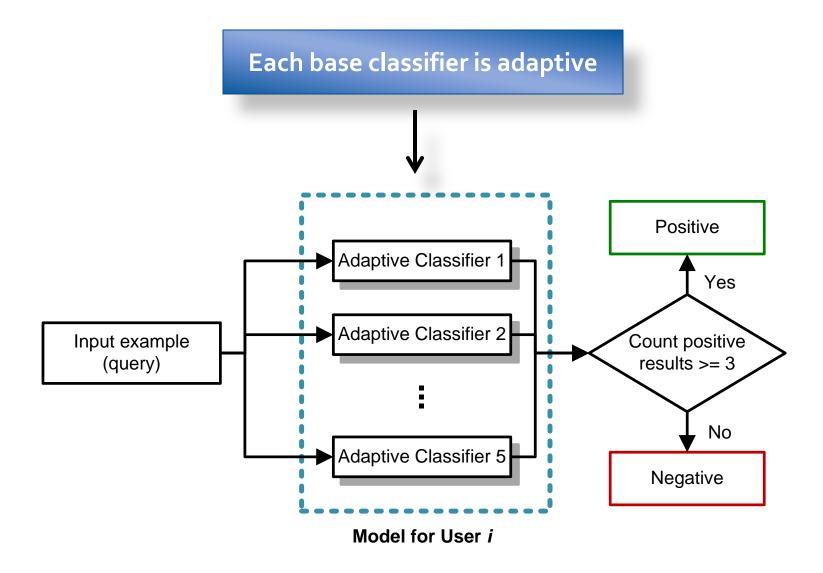
Adaptive Biometric Systems deal with template ageing

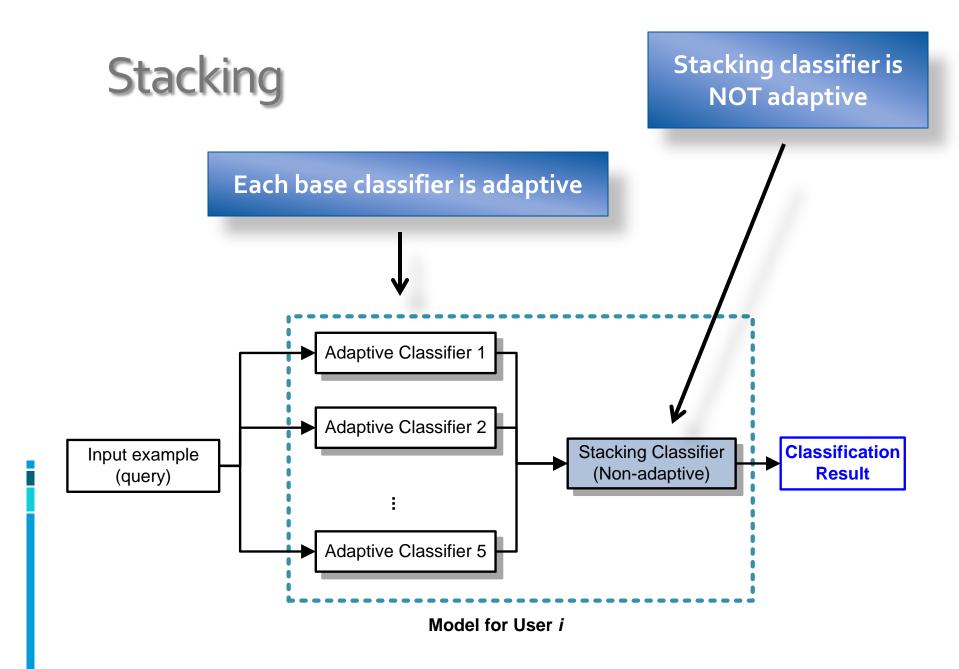
Studies have shown that the combination of individual techniques in **ensembles** may lead to **more accurate and stable decision models**.

Several adaptive one-class algorithms have

This paper investigates the use of simple **ensemble approaches** for adaptive biometric systems:

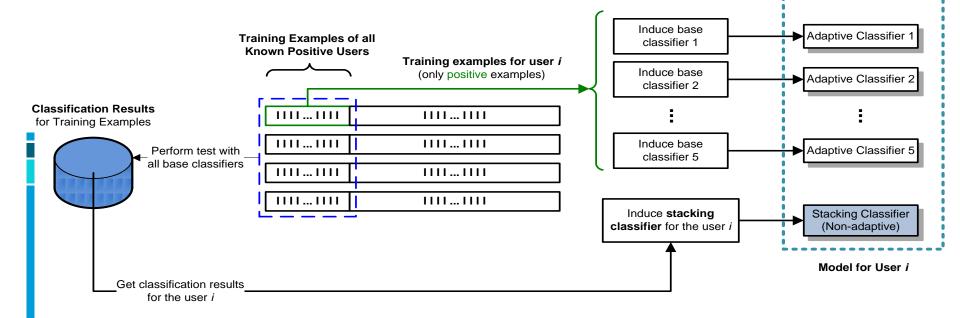
- Proposal of a model to apply an ensemble of adaptive algorithms for biometrics;

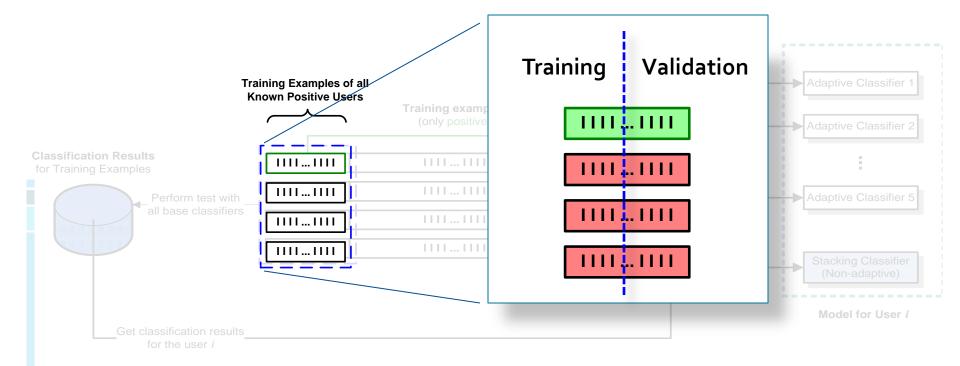

- Study of the behaviour of the ensemble with adaptive algorithms in a data stream context.


1. Introduction

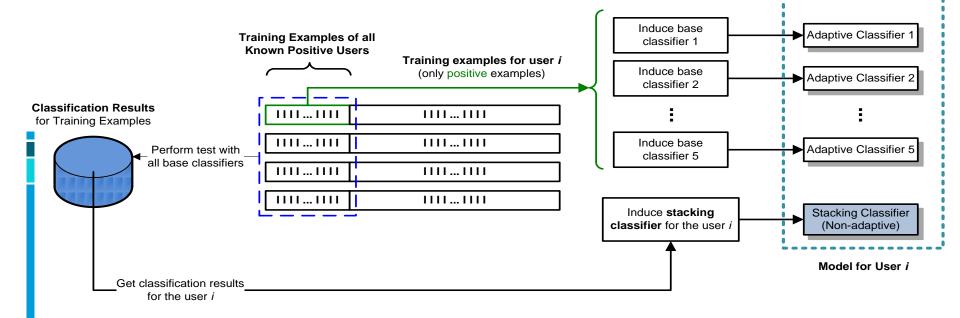
2. Ensembles in Adaptive Biometric Systems

3. Experimental Results and Conclusion


Majority Voting


Stacking Training

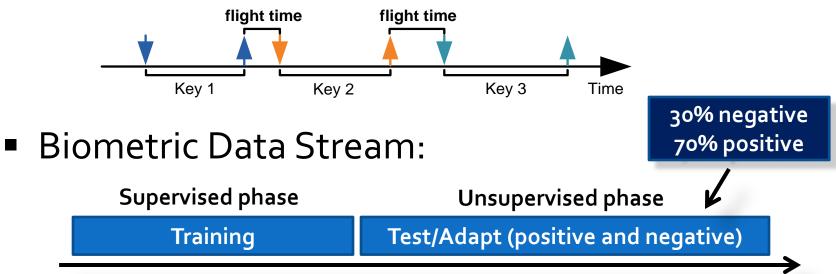
Stacking classifier requires both positive and negative examples
Biometric system has access to data from all enrolled users


Stacking Training

Stacking classifier requires both positive and negative examples;
Biometric system has access to data from all enrolled users;

Stacking Training

Stacking classifier requires both positive and negative examples;
Biometric system has access to data from all enrolled users;

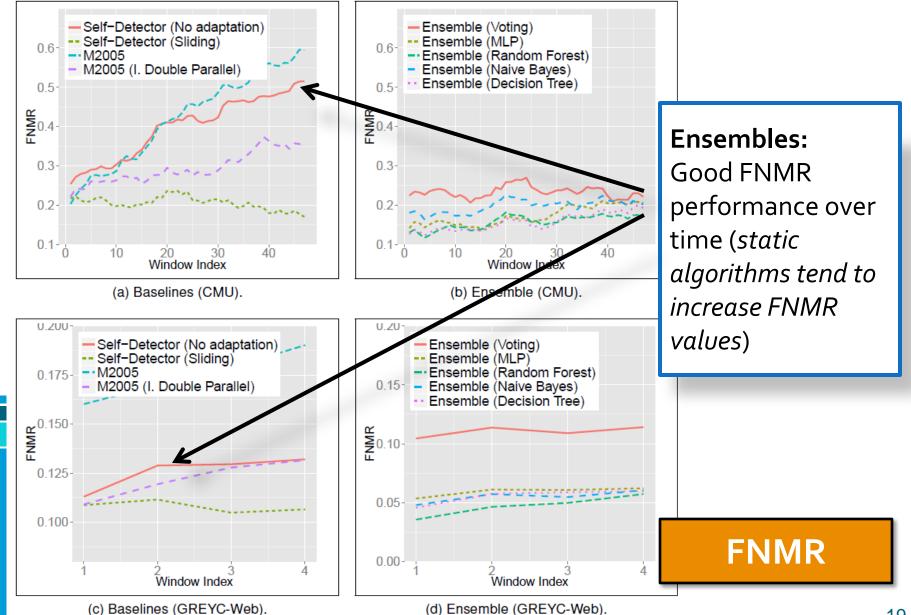

1. Introduction

2. Ensembles in Adaptive Biometric Systems

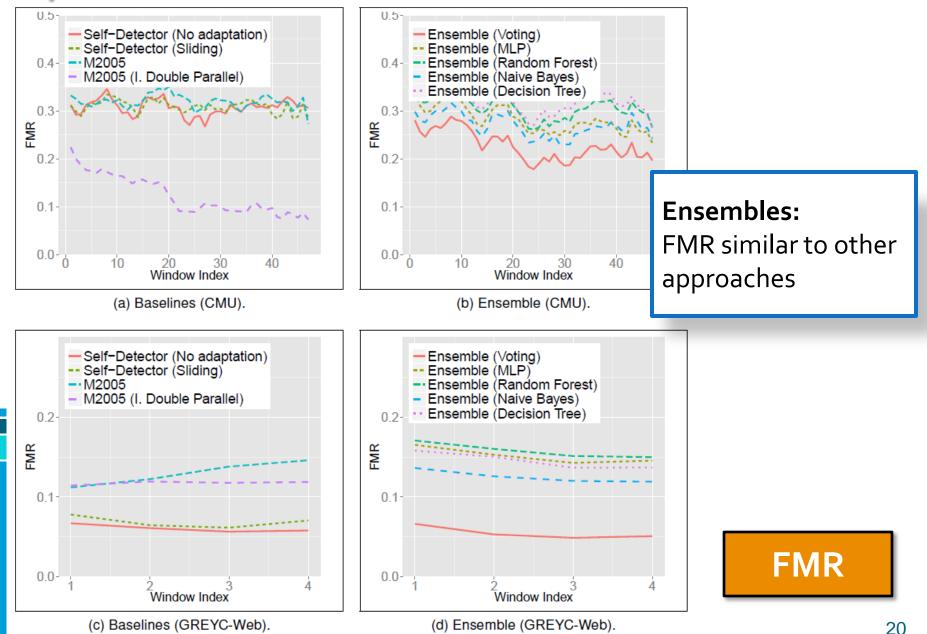
3-Experimental Results and Conclusion

Experimental Setup

- Datasets:
 - GREYC: 100 users (2 months)
 - CMU: 51 users (8 sessions)
 - GREYC-Web: 35 users (> 1 year)
- Extracted features:


Experimental Setup

- Base Classification Algorithms (adaptive):
 - M2005 (I. Double Parallel)
 - Self-Detector (Sliding, Usage Control R, Usage Control S, Usage Control 2)
- **Stacking** Classification Algorithms (static):
 - Multilayer Perceptron
 - Decision Tree (J48)
 - Random Forest
 - Naïve Bayes


	G	REYC Dataset			-
	Algorithm	FMR	FNMR	Acc (balanc.)	Experimental Decute
	Self-Detector (No adaptation)	0.090 (0.010)	0.165 (0.005)	0.872 (0.006)	Experimental Results
	Self-Detector (Sliding)	0.092 (0.011)	0.129 (0.004)	0.890 (0.006)	1
	Self-Detector (Usage Control R)	0.092 (0.010)	0.140 (0.005)	0.884 (0.006)	
m	Self-Detector (Usage Control S)	0.089 (0.010)	0.149 (0.005)	0.881 (0.006)	
	Self-Detector (Usage Control 2)	0.069 (0.009)	0.168 (0.006)	0.882 (0.006)	
	M2005	0.221 (0.019)	0.130 (0.003)	0.824 (0.009)	
_	M2005 (I. Double Parallel)	0.210 (0.018)	0.092 (0.004)	0.849 (0.008)	
	Ensemble (Voting)			0.893 (0.006)	
	Ensemble (MLP)			0.882 (0.008)	
<u>ц</u>	Ensemble (Random Forest)			0.881 (0.008)	
	Ensemble (Naive Bayes)		0.094 (0.005)		Najority Voting
	Ensemble (Decision Tree)		0.066 (0.005)	0.875 (0.006)	inajoney voering
		CMU Dataset			Ensemble:
	Algorithm	FMR	FNMR	Acc (balanc.)	
	Self-Detector (No adaptation)	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	0.651 (0.009)	Consintent high
	Self-Detector (Sliding)			0.749 (0.016)	
Ω	Self-Detector (Usage Control R)				performance
	Self-Detector (Usage Control S)				periormanee
	Self-Detector (Usage Control 2)				
	M2005			0.638 (0.013)	ר א <i>ר</i>
_	M2005 (I. Double Parallel)			0.786 (0.006)	
	Ensemble (Voting)			0.776 (0.009)	
ш	Ensemble (MLP) Ensemble (Random Forest)			0.781 (0.012) 0.775 (0.014)	
	Ensemble (Naive Bayes) Ensemble (Decision Tree)			0.772 (0.015) 0.766 (0.014)	
_				0.766 (0.014)	= /
	Algorithm	YC-Web Datas	FNMR	Acc (balanc.)	. /
	Self-Detector (No adaptation)		0.141 (0.005)		- /
	Self-Detector (Sliding)			0.920 (0.007)	ר /
	Self-Detector (Usage Control R)				
	Self-Detector (Usage Control S)				
	Self-Detector (Usage Control 2)				
	M2005			0.829 (0.008)	Ovorall
	M2005 (I. Double Parallel)			0.887 (0.008)	Overall
	Ensemble (Voting)			0.928 (0.005)	
	Ensemble (MLP)			0.911 (0.008)	performance
ш	Ensemble (Random Forest)			0.913 (0.012)	performance
	Ensemble (Naive Bayes)			0.923 (0.008)	
	Ensemble (Decision Tree)			0.908 (0.007)	. 17
					- 11

Algorithm FMR FNMR Acc (balanc.) Self-Detector (No adaptation) 0.090 (0.010) 0.165 (0.005) 0.872 (0.006) Self-Detector (Siding) 0.092 (0.011) 0.129 (0.004) 0.890 (0.006) Self-Detector (Usage Control S) 0.092 (0.010) 0.140 (0.005) 0.884 (0.006) Self-Detector (Usage Control S) 0.092 (0.010) 0.140 (0.005) 0.881 (0.006) Self-Detector (Usage Control S) 0.221 (0.019) 0.130 (0.003) 0.822 (0.008) Ensemble (MLP) 0.181 (0.016) 0.053 (0.004) 0.881 (0.008) Ensemble (Nuice Bayes) 0.186 (0.013) 0.092 (0.004) 0.881 (0.008) Ensemble (Nuice Bayes) 0.184 (0.013) 0.094 (0.005 0.893 (0.006) Ensemble (Naire Bayes) 0.184 (0.013) 0.095 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.490 (0.005) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self 0.005 0.897 (0.016) Self-Detector (Usage Control R) 0.111 (0.030) 0.291 (0.031) 0.716 (0.018) 0.756 (0.008) Self 0.016) Self 0.016)						REYC Dataset	6	
Self-Detector (Sliding) 0.092 (0.011) 0.129 (0.004) 0.890 (0.006) Self-Detector (Usage Control R) 0.092 (0.010) 0.140 (0.005) 0.884 (0.006) Self-Detector (Usage Control S) 0.089 (0.009) 0.149 (0.005) 0.884 (0.006) Self-Detector (Usage Control S) 0.089 (0.009) 0.188 (0.006) 0.882 (0.006) M2005 0.221 (0.019) 0.130 (0.003) 0.824 (0.009) M2005 (I. Double Parallel) 0.210 (0.018) 0.092 (0.004) 0.889 (0.008) Ensemble (NLP) 0.181 (0.016) 0.054 (0.004) 0.882 (0.008) Ensemble (Narom Forest) 0.185 (0.016) 0.053 (0.004) 0.881 (0.008) Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005 0.875 (0.006) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Usage Control R) 0.311 (0.031) 0.221 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.031) 0.221 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.014) 0.275 (0.012) 0.756		porting optol Doculto	Evino	Acc (balanc.)	FNMR			
Self-Detector (Sliding) 0.092 (0.011) 0.129 (0.004) 0.890 (0.006) Self-Detector (Usage Control R) 0.092 (0.010) 0.140 (0.005) 0.884 (0.006) Self-Detector (Usage Control S) 0.089 (0.009) 0.149 (0.005) 0.884 (0.006) Self-Detector (Usage Control S) 0.089 (0.009) 0.188 (0.006) 0.882 (0.006) M2005 0.221 (0.019) 0.130 (0.003) 0.824 (0.009) M2005 (I. Double Parallel) 0.210 (0.018) 0.092 (0.004) 0.889 (0.008) Ensemble (NLP) 0.181 (0.016) 0.054 (0.004) 0.882 (0.008) Ensemble (Narom Forest) 0.185 (0.016) 0.053 (0.004) 0.881 (0.008) Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005 0.875 (0.006) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Usage Control R) 0.311 (0.031) 0.221 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.031) 0.221 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.014) 0.275 (0.012) 0.756	S	penmentai kesuits	EXPE					
 Self-Detector (Usage Control S) 0.089 (0.010) 0.149 (0.005) 0.881 (0.006) Self-Detector (Usage Control 2) 0.069 (0.009) 0.168 (0.006) 0.882 (0.006) M2005 0.221 (0.019) 0.130 (0.003) 0.824 (0.009) M2005 0.201 (0.018) 0.092 (0.004) 0.849 (0.008) Ensemble (Vating) 0.087 (0.010) 0.126 (0.005 0.893 (0.006) Ensemble (MLP) 0.181 (0.016) 0.054 (0.004 0.881 (0.008) Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.041 (0.016) 0.651 (0.009) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Usage Control R) 0.311 (0.030 0.220 (0.013) 0.756 (0.008) Self-Detector (Usage Control R) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control S) 0.213 (0.014) 0.276 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) 			1					
Self-Detector (Usage Control 2) 0.069 (0.009) 0.118 (0.006) 0.882 (0.006) M2005 0.221 (0.019) 0.130 (0.003) 0.824 (0.009) M2005 (I. Double Parallel) 0.210 (0.018) 0.092 (0.004) 0.849 (0.008) Ensemble (Voting) 0.087 (0.010) 0.126 (0.005) 0.893 (0.006) Ensemble (MLP) 0.181 (0.016) 0.053 (0.004) 0.882 (0.008) Ensemble (Random Forest) 0.185 (0.016) 0.053 (0.004) 0.881 (0.008) Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005) 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.875 (0.006) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Vo adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control S) 0.213 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) M2005 0.273 (0.028) 0.451 (0.019) </th <th></th> <th></th> <th></th> <th>0.884 (0.006)</th> <th>0.140 (0.005)</th> <th>0.092 (0.010)</th> <th>Self-Detector (Usage Control R)</th> <th></th>				0.884 (0.006)	0.140 (0.005)	0.092 (0.010)	Self-Detector (Usage Control R)	
M2005 0.221 (0.019) 0.130 (0.003) 0.824 (0.009) M2005 (I. Double Parallel) 0.210 (0.018) 0.092 (0.004) 0.849 (0.008) Ensemble (Voting) 0.087 (0.010) 0.126 (0.005) 0.893 (0.006) Ensemble (MLP) 0.181 (0.016) 0.054 (0.004) 0.882 (0.008) Ensemble (Random Forest) 0.185 (0.016) 0.053 (0.004) 0.882 (0.008) Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005) 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.875 (0.006) M2005 M207 Dataset Self-Detector (No adaptation) 0.2287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (IV adaptation) 0.287 (0.023) 0.410 (0.013) 0.749 (0.016) 0.651 (0.009) Self-Detector (IV age Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) 0.608) Self-Detector (Usage Control R) 0.213 (0.014) 0.275 (0.028) 0.451 (0.019) 0.638 (0.013) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) 0.133 0.143 (0.012) 0.323 (0.014) 0.767 (0.009)				0.881 (0.006)	0.149 (0.005)	0.089 (0.010)	Self-Detector (Usage Control S)	Ω
M2005 (I. Double Parallel) 0.210 (0.018) 0.092 (0.004) 0.849 (0.008) Ensemble (Voting) 0.087 (0.010) 0.126 (0.005) 0.893 (0.006) Ensemble (MLP) 0.181 (0.016) 0.054 (0.004) 0.882 (0.008) Ensemble (Random Forest) 0.185 (0.016) 0.053 (0.004) 0.881 (0.008) Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005) 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.875 (0.006) M2005 Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.875 (0.006) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) 0.815 (0.016) 0.533 (0.014) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) 0.756 (0.008) 0.975 (0.012) 0.756 (0.008) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.009) 0.009 0.009 0.001 (0.016) 0.638 (0.013) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) 0.767 (0.09) 0.009 0.001 (0.016) 0.638 (0.013)				0.882 (0.006)	0.168 (0.006)	0.069 (0.009)	Self-Detector (Usage Control 2)	
Ensemble (Voting) 0.087 (0.010) 0.126 (0.005) 0.893 (0.006) Ensemble (MLP) 0.181 (0.016) 0.054 (0.004) 0.882 (0.008) Ensemble (Random Forest) 0.185 (0.016) 0.053 (0.004) 0.881 (0.008) Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005) 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.895 (0.007) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control R) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) 0.013)				0.824 (0.009)	0.130 (0.003)	0.221 (0.019)	M2005	
 Ensemble (MLP) 0.181 (0.016) 0.054 (0.004) 0.882 (0.008) 0.881 (0.008) 0.881 (0.008) 0.881 (0.008) 0.895 (0.007) 0.884 (0.013) 0.066 (0.005) 0.875 (0.006) Self-Detector (No adaptation) Self-Detector (No adaptation) Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.75 (0.012) 0.756 (0.008) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control R) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013)			_	0.849 (0.008)	0.092 (0.004)	0.210 (0.018)	M2005 (I. Double Parallel)	
 Ensemble (Random Forest) 0.185 (0.016) 0.053 (0.004 0.881 (0.008) 0.895 (0.007) 0.895 (0.007) 0.116 (0.012) 0.094 (0.005 0.895 (0.007) 0.875 (0.006) <u>Algorithm FMR FMR Acc (balanc.)</u> 0.066 (0.005 0.875 (0.006) <u>Self-Detector (No adaptation)</u> 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) 0.551 (0.009) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) 0.551 (0.009) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.286 (0.005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.031) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) 0.291 (0.013) 0.291 (0.014) 0.275 (0.012) 0.291 (0.013) 0.291 (0.013) 0.291 (0.013) 0.291 (0.013) 0.291 (0.013) 0.291 (0.013) 0.291 (0.013) 0.291 (0.013) 0.291 (0.013)			<u> </u>	0.893 (0.006)				
Ensemble (Naive Bayes) 0.116 (0.012) 0.094 (0.005) 0.895 (0.007) Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.875 (0.006) CMU Dataset CMU Dataset FNMR Acc (balanc.) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) 0.651 (0.009) FNMR (may be a result of the imbalanced self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Output Output <t< th=""><th>_</th><th></th><th></th><th></th><th>0.054 (0.004</th><th>0.181 (0.016)</th><th></th><th></th></t<>	_				0.054 (0.004	0.181 (0.016)		
Ensemble (Decision Tree) 0.184 (0.013) 0.066 (0.005) 0.875 (0.006) Staking: Iower Staking: Iower Algorithm FMR FNMR Acc (balanc.) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) Output Detector (Data				0.881 (0.008)				ш
CMU Dataset Algorithm FMR FNMR Acc (balanc.) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013)		Ctalding and an unar		0.895 (0.007)	0.094 (0.005)	0.116 (0.012)		
Algorithm FMR FNMR Acc (balanc.) Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013)		Staking: lower		0.875 (0.006)	0.066 (0.005)	0.184 (0.013)	Ensemble (Decision Tree)	
Self-Detector (No adaptation) 0.287 (0.023) 0.410 (0.016) 0.651 (0.009) Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013)		ENIMP (may ha a			-			
Self-Detector (Sliding) 0.291 (0.031) 0.211 (0.013) 0.749 (0.016) result of the Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) imbalanced Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) imbalanced Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) biometric data		FINIVIR (IIIdy De d						
 Self-Detector (Usage Control R) 0.311 (0.030) 0.220 (0.013) 0.735 (0.015) Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) 		' recult of the						
Self-Detector (Usage Control S) 0.213 (0.014) 0.275 (0.012) 0.756 (0.008) Imbalanced Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) imbalanced M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) imbalanced		result of the						
Self-Detector (Usage Control 2) 0.143 (0.012) 0.323 (0.014) 0.767 (0.009) M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) biometric data		imbalancod						Ω
M2005 0.273 (0.028) 0.451 (0.019) 0.638 (0.013) biometric data		IIIIDalaiiCeu						
		biomotric data						
NIZUU5 (I, UOUDIE Parallel) 0.122 (0.011) 0.306 (0.008) 0.786 (0.006)		DIOMETICUALA						
		ctroom)						
Ensemble (Voting) 0.208 (0.017) 0.239 (0.013) 0.776 (0.009) Stream) Ensemble (MLP) 0.257 (0.039) 0.182 (0.018) 0.781 (0.012) Stream)		Stream)						
Li Ensemble (Random Forest) 0.283 (0.044) 0.168 (0.020 0.775 (0.014)								- 111
Ensemble (Naive Bayes) 0.255 (0.025) 0.202 (0.010 0.772 (0.015)								
Ensemble (Decision Tree) 0.299 (0.043) 0.169 (0.016 0.776 (0.014)								
GREYC-Web Dataset				0.700 (0.014)				
Algorithm FMR FNMR Acc (balanc.)				Acc (balanc)				
Self-Detector (No adaptation) 0.066 (0.008) 0.141 (0.005) 0.896 (0.005)								
Self-Detector (Sliding) 0.074 (0.011) 0.085 (0.004) 0.920 (0.007)								
Self-Detector (LIsage Control R) 0.069 (0.009) 0.086 (0.004) 0.922 (0.006)								
Self-Detector (Usage Control S) 0.053 (0.007) 0.123 (0.005) 0.912 (0.005)								
Self-Detector (Usage Control 2) 0.035 (0.007) 0.148 (0.010) 0.908 (0.007)								
M2005 0.096 (0.013) 0.245 (0.016) 0.829 (0.008) 0.095 (0.015) 0.131 (0.011) 0.887 (0.008) 0.095 (0.015) 0.131 (0.011) 0.887 (0.008)		Overall						
M2005 (I. Double Parallel) 0.095 (0.015) 0.131 (0.011) 0.887 (0.008)		Overall					M2005 (I. Double Parallel)	
Ensemble (Voting) 0.052 (0.007) 0.091 (0.004 0.928 (0.005)		C	ר /	0.928 (0.005)	0.091 (0.004)	0.052 (0.007)	Ensemble (Voting)	
Ensemble (Voting) 0.052 (0.007) 0.091 (0.004) 0.928 (0.005) Ensemble (MLP) 0.126 (0.015) 0.052 (0.006) 0.911 (0.008) Ensemble (MLP) 0.126 (0.025) 0.052 (0.006) 0.911 (0.008)		performance		0.911 (0.008)	0.052 (0.006)	0.126 (0.015)	Ensemble (MLP)	
L Ensemble (Random Forest) 0.122 (0.026) 0.052 (0.004 0.913 (0.012)				0.913 (0.012)	0.052 (0.004)	0.122 (0.026)	Ensemble (Random Forest)	ш
Ensemble (Naive Bayes) 0.087 (0.022) 0.067 (0.007) 0.923 (0.008)						· · · · · ·		
Ensemble (Decision Tree) 0.121 (0.016) 0.063 (0.005) 0.908 (0.007)	18	18		0.908 (0.007)	0.063 (0.005)	0.121 (0.016)	Ensemble (Decision Tree)	

Experimental Results

Experimental Results

2. Ensembles in Adaptive Biometric Systems

3-Experimental Results and Conclusion

Conclusion

- This paper investigated the use of ensemble approaches for adaptive biometric systems (and how to implement them in this context).
- Ensemble approaches resulted in <u>consistent high predictive</u> <u>performance over all datasets</u>;
- Majority Voting (the simplest one) obtained accuracy better than baselines on two datasets;
- Although ensemble implies in high use of computational resources, it may justify its use by the high predictive performance.

Future Work:

- Change the way of selecting data for stacking classifier training;
- Additional ensemble approaches.

Ensemble of Adaptive Algorithms for Keystroke Dynamics

- Universidade de São Paulo (USP)
 - Instituto de Ciências Matemáticas e de Computação (ICMC)
- Acknowledgements:
 - FAPESP
 - CAPES
 - CNPq

Paulo Henrique Pisani Universidade de São Paulo phpisani@icmc.usp.br

Ana Carolina Lorena Universidade Federal de São Paulo aclorena@unifesp.br

André C. P. L. F de Carvalho Universidade de São Paulo andre@icmc.usp.br

References

- [1] A. Jain, A. Ross, and S. Prabhakar, "An introduction to biometric recognition," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 14, no. 1, pp. 4–20, 2004.
- [2] F. Roli, L. Didaci, and G. Marcialis, "Adaptive biometric systems that can improve with use," in Advances in Biometrics, N. Ratha and V. Govindaraju, Eds. Springer London, 2008, pp. 447–471.
- [3] A. Rattani, G. Marcialis, and F. Roli, "Self adaptive systems: An experimental analysis of the performance over time," in Computational Intelligence in Biometrics and Identity Management (CIBIM), 2011 IEEE Workshop on, 2011, pp. 36–43.
- [4] N. Poh, A. Rattani, and F. Roli, "Critical analysis of adaptive biometric systems," Biometrics, IET, vol. 1, no. 4, pp. 179–187, 2012.
- [5] S. Fenker, E. Ortiz, and K. Bowyer, "Template aging phenomenon in iris recognition," Access, IEEE, vol. 1, pp. 266–274, 2013.
- [6] P. H. Pisani, A. C. Lorena, and A. C. P. L. F. de Carvalho, "Adaptive positive selection for keystroke dynamics," Journal of Intelligent & Robotic Systems, pp. 1–17, 2014.
- [7] P. Kang, S.-s. Hwang, and S. Cho, "Continual retraining of keystroke dynamics based authenticator," in Advances in Biometrics, ser. LNCS.
 Springer Berlin / Heidelberg, 2007, vol. 4642, pp. 1203–1211.
- [8] R. Giot, C. Rosenberger, and B. Dorizzi, "Hybrid template update system for unimodal biometric systems," in Biometrics: Theory, Appli- cations and Systems (BTAS), 2012 IEEE Fifth International Conference on, 2012, pp. 1–7.
- [9] A. Lumini and L. Nanni, "Ensemble of on-line signature matchers based on overcomplete feature generation," Expert Systems with Applications, vol. 36, no. 3, Part 1, pp. 5291 5296, 2009.
- [10] C. Pagano, E. Granger, R. Sabourin, G. Marcialis, and F. Roli, "Adaptive ensembles for face recognition in changing video surveillance environments," Information Sciences, vol. 286, pp. 75 – 101, 2014.
- [11] P. S. Teh, A. B. J. Teoh, and S. Yue, "A survey of keystroke dynamics biometrics," The Scientific World Journal, pp. 1–24, 2013.
- [12] K. Killourhy and R. Maxion, "Why did my detector do that?! predicting keystroke-dynamics error rates," in Recent Advances in Intrusion Detection, ser. Lecture Notes in Computer Science, S. Jha, R. Sommer, and C. Kreibich, Eds. Springer Berlin / Heidelberg, 2010, vol. 6307, pp. 256– 276.
- [13] R. Giot, M. El-Abed, and C. Rosenberger, "Greyc keystroke: a benchmark for keystroke dynamics biometric systems," in IEEE Int. Conf. on Biometrics: Theory, Applications and Systems. IEEE Computer Society, 2009, pp. 419–424.

References

- [14] R. Giot, M. El-Abed, and C. Rosenberger, "Web-based benchmark for keystroke dynamics biometric systems: A statistical analysis," in Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2012 Eighth Int. Conf. on, 2012, pp. 11–15.
- [15] A. Messerman, T. Mustafic, S. Camtepe, and S. Albayrak, "Continuous and non-intrusive identity verification in real-time environments based on free-text keystroke dynamics," in *Biometrics (IJCB)*, *Int. Joint Conf. on*, 2011, pp. 1–8.
- [16] T. G. Dietterich, "Ensemble methods in machine learning," in *Proceedings of the First Int. Workshop on Multiple Classifier Systems, ser. MCS* '00. Springer-Verlag, 2000, pp. 1–15.
- [17] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, 2004.
- [18] P. H. Pisani and A. C. Lorena, "A systematic review on keystroke dynamics," *Journal of the Brazilian Computer Society, vol. 19, no. 4, pp. 573–587, 2013.*
- [19] P. H. Pisani, A. C. Lorena, and A. C. de Carvalho, "Adaptive approaches for keystroke dynamics," in Neural Networks (IJCNN), The 2015 International Joint Conference on, 2015.
- [20] T. Stibor and J. Timmis, "Is negative selection appropriate for anomaly detection," ACM GECCO, pp. 321–328, 2005.
- [21] S. T. Magalhaes, K. Revett, and H. M. D. Santos, "Password secured sites: Stepping forward with keystroke dynamics," in Proceedings of the
- International Conference on Next Generation Web Services Practices, ser. NWESP '05. IEEE Computer Society, 2005, pp. 293–298.
- [22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The weka data mining software: An update," SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.
- [23] P. H. Pisani, A. C. Lorena, and A. C. Ponce de Leon Carvalho, "Adaptive algorithms in accelerometer biometrics," in Intelligent Systems (BRACIS), 2014 Brazilian Conference on, Oct 2014, pp. 336–341.
- [24] H. Zhang, "The optimality of naive bayes," in Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004), V. Barr and Z. Markov, Eds. AAAI Press, 2004.
- [25] J. Dem^{*}sar, "Statistical comparisons of classifiers over multiple datasets," J. Mach. Learn. Res., pp. 1–30, 2006.